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Experience prioritization as occupancy optimization

Typical prioritized experience replay prioritize out-of-distribution states, likely 
leading to high value estimation errors.

KL Divergence as the Regularizer

Algorithm: soft-actor critic in JAX [3]. 
Baselines: uniform experience replay (UER), 
prioritized experience replay (PER) [4], large 
batch experience replay (LaBER) [5].
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SAC with double critics tends to underestimate 
the value [6][7]. ROER shows empirically more 
accurate value estimation and faster 
convergence.
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Implementation

● The function of KL divergence has the form
● Its convex conjugate has the form
● We obtain the objective reminiscent to the loss function of extreme Q-learning [2]  

Introduce f-divergence regularizer f-divergence induced by a convex function f

Serves as a penalty when the off-policy deviates too much from on-policy distribution

Transform the above objective to the following dual problem [1]

Apply change of variable using 
Convex conjugate of f

The solution Q* satisfies 
We can shape towards with the weighting formulation 

Optimal on-policy distribution Buffer off-policy distribution

● The occupancy ratio has the form  

● Leverage a separate value network with the 
regularized objective for plug-in and use as in 
the right graph 

● Solve the optimization in many steps using the 
following updating rule

Conclusion: We propose a new pipeline of TD error based prioritization scheme 
and show the relation between the form of priority and the objective function. 
Limitation: Additional hyper-parameters and 
lack of theoretical guarantees
Future work: Adaptive loss temperature and 
further exploration in offline-to-online fine tuning 
and offline setting.
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