

ROER: Regularized Optimal Experience Replay

Changling Li, Zhang-Wei Hong, Pulkit Agrawal, Divyansh Garg, Joni Pajarinen

Motivation

Typical prioritized experience replay prioritize out-of-distribution states, likely

Results

Algorithm: soft-actor critic in JAX [3].

leading to high value estimation errors.

Method **Introduce f-divergence regularizer** f-divergence induced by a convex function *f* Loss temperature $\max_{d\mathcal{D}} \mathcal{J}_{D,f}(d^*, d^{\mathcal{D}}) := \mathbb{E}_{(s,a)\sim d^*}[r(s,a)] - \beta D_f\left(d^* \| d^{\mathcal{D}}\right) \quad D_f(d^* \| d^{\mathcal{D}}) = \mathbb{E}_{(s,a)\sim d^{\mathcal{D}}}[f(w_{*/\mathcal{D}}(s,a))]$ $w_{*/\mathcal{D}} := \frac{d^*(s, a)}{d^{\mathcal{D}}(s, a)} \bullet \text{Optimal on-policy distribution} \quad \text{Buffer off-policy distribution} \quad \text{Serves as a penalty when the off-policy deviates too much from on-policy distribution}$ **Experience** prioritization as occupancy optimization Transform the above objective to the following dual problem [1] $\tilde{\mathcal{J}}_{D,f}(d^*, d^{\mathcal{D}}) = \min_{x} \mathbb{E}_{(s,a)\sim d^*}[r(s,a)] + \beta \mathbb{E}_{(s,a)\sim d^{D}}[f_*(x(s,a))] - \beta \mathbb{E}_{(s,a)\sim d^*}[x(s,a)]]$ Convex conjugate of f Apply change of variable using $Q(s, a) - \gamma V^*(s') = -\beta x(s, a) + r(s, a)$ $\tilde{\mathcal{J}}_{D,f}(d^*, d^{\mathcal{D}}) = \min_{Q} \beta \cdot \mathbb{E}_{(s,a) \sim d^{\mathcal{D}}} \left[f_* \left(\left(\mathcal{B}^* Q(s, a) - Q(s, a) \right) / \beta \right) \right] + (1 - \gamma) \mathbb{E}_{s_0 \sim \mu_0, a_0 \sim \pi^*(s_0)} \left[Q\left(s_0, a_0\right) \right]$ The solution Q* satisfies $f'_*(\delta_{Q^*}/\beta) = d^*/d^{\mathcal{D}}$ We can shape $d^{\mathcal{D}}$ towards d^* with the weighting formulation

 $d^* = f'_*(\delta_{Q^*}/\beta) \cdot d^{\mathcal{D}}$

Baselines: uniform experience replay (UER), prioritized experience replay (PER) [4], large batch experience replay (LaBER) [5].

Online: MuJoCo & DM Control

14				
Env	SAC	SAC+PER	SAC+LaBER	SAC+ROER (ours)
Ant-v2	1153.1 ± 335.5	1654.1 ± 342.9	1006.0 ± 546.0	2275.5 ± 598.6
HalfCheetah-v2	9017.4 ± 172.5	9240.4 ± 276.5	7962.8 ± 304.5	10695.5 ± 183.4
Hopper-v2	2813.0 ± 481.2	2937.7 ± 334.3	2330.8 ± 514.3	3010.2 ± 299.0
Humanoid-v2	5026.8 ± 154.1	4993.4 ± 198.0	5000.9 ± 319.5	$\textbf{5257.0} \pm 153.2$
Walker2d-v2	$\textbf{4344.3} \pm 177.7$	4003.9 ± 318.7	4033.1 ± 375.7	4328.5 ± 311.4
Fish-swim	247.7 ± 59.6	234.6 ± 63.6	178.3 ± 49.9	301.9 ± 54.9
Hopper-hop	134.4 ± 34.2	147.2 ± 31.3	146.7 ± 29.8	125.7 ± 35.2
Hopper-stand	521.1 ± 120.1	384.7 ± 94.9	475.5 ± 111.0	798.5 ± 89.2
Humanoid-run	130.3 ± 21.7	116.3 ± 18.7	144.8 ± 18.1	137.3 ± 12.3
Humanoid-stand	733.4 ± 53.9	765.0 ± 38.8	827.8 ± 40.9	691.6 ± 57.8
Quadruped-run	761.2 ± 89.4	606.2 ± 114.7	796.3 ± 82.6	772.1 ± 77.7

Online with Pretraining: AntMaze D4RL

Regularized Optimal Experience Replay

KL Divergence as the Regularizer

- The function of KL divergence has the form $f(x) = x \log(x)$
- Its convex conjugate has the form $f_*(y) = e^y 1$
- We obtain the objective reminiscent to the loss function of extreme Q-learning [2]

$$\min_{Q} \mathbb{E}_{(s,a)\sim d^{\mathcal{D}}} \left[e^{(\mathcal{B}^*Q(s,a)-Q(s,a))/\beta} \right] - \mathbb{E}_{(s,a,s')\sim d^{\mathcal{D}}} \left[\mathcal{B}^*Q(s,a) - Q(s,a) \right] - 1$$

• The occupancy ratio has the form

Implementation

- Leverage a separate value network with the regularized objective for plug-in and use as in the right graph
- Solve the optimization in many steps using the following updating rule

$$d' = [\lambda e^{\delta_{Q^*}/\beta} + (1 - \lambda)] \cdot d^{\mathcal{D}} \text{ with } \lambda \in (0, 1]$$

 $f_*(y)$

 $e^{y} - 1$

 $\frac{1}{2}y^2 + y$

 $\frac{2y}{2-y}$

 $-\log(1-y)$

 $-\sqrt{1-2y}+1$

 $f'_*(y)$

 e^y

 $\frac{1}{1-y}$

y+1

 $\sqrt{1-2y}$

 $\frac{4}{(2-y)^2}$

Value Estimation Analysis

SAC with double critics tends to underestimate the value [6][7]. ROER shows empirically more accurate value estimation and faster convergence.

Conclusion, Limitation & Future Work

Conclusion: We propose a new pipeline of TD error based prioritization scheme and show the relation between the form of priority and the objective function.

Divergence

Reverse KL

Pearson χ^2

Neyman χ^2

Total variation

KL

f(x)

 $x \log x$

 $-\log x$

 $\frac{(x-1)^2}{2x}$

Squared Hellinger $2(\sqrt{x}-1)^2$

 $\frac{1}{2}|x-1|$

 $\frac{1}{2}(x-1)^2$

Limitation: Additional hyper-parameters and lack of theoretical guarantees

Future work: Adaptive loss temperature and further exploration in offline-to-online fine tuning and offline setting.

Reference

[1] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of discounted stationary distribution corrections. Advances in neural information processing systems, 32, 2019a

[2] Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl without entropy. arXiv preprint arXiv:2301.02328, 2023

[3] Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2021. URL https://github.com/ikostrikov/jaxrl. [4] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv preprint arXiv:1511.05952, 2015.

[5] Thibault Lahire, Matthieu Geist, and Emmanuel Rachelson. Large batch experience replay. arXiv preprint arXiv:2110.01528, 2021

[6] Sicen Li, Qinyun Tang, Yiming Pang, Xinmeng Ma, and Gang Wang. Balancing value underestimation and overestimation with realistic actor-critic. arXiv preprint arXiv:2110.09712, 2021.

[7] Haibin Zhou, Zichuan Lin, Junyou Li, Qiang Fu, Wei Yang, and Deheng Ye. Revisiting discrete soft actor-critic. arXiv preprint arXiv:2209.10081, 2022.