Agent-to-Agent Theory of Mind:

Testing Interlocutor Awareness among Larg
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Summarize the following
article...

Reasoning

e Communication style reveals identity. [

Which of the following models most likely
produced it: (A) Claude (B) GPT (C)

Solve the following math

Pattenrs
question step-by-step. }

DeepSeek (D) Llama (E) Mistral (F) Cannot
\_ Identify )

LLMs are no exception.
e Theseidentity traces correlate with capabilities and
failure modes.
e We can leverage the obtained characteristics associated with
identity to work for our benefits.
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| build custom ML
models for
healthcare applications.
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code to calculate
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RQ1: Can LLMs accurately identify other
LLMs based solely on their responses
across different tasks?

Takeaway 1: LLMs can identify each other with high accuracy

XSum Politics

Math

éa& 0.04 001 000 0.01 0.01 0.06 0.00 0.07 0.02 0.03 0.02
£ 0.3
E & WYl 001 0.02 - M 001 006 005
é‘ﬂ C')\’% . . . . . .
3 &
E & IPZINNEN 0.06  0.00 0.07
PR
i= \y@ 0.00
<IN
@ : 0.00 0.00 i , _
| | | | ' | | 0.0
S > e &5 K > x5 o4 \}6 &K > e
& P . Q)Q% ,\}‘b“ &9 P Q)q)é? QQ” & G SP @@QQ) /\}CZ’) &’

Target Model Families

Target Model Families

Target Model Families

Takeaway 2: In-Family identification is easier than out-of-family
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Takeaway 3: Reasoning models are better at identifying
out-of-family Models

Type Accuracy Takeaway 4: Familiarity through
In-range 33.8% training data provides advantage in
Out-of-range 14.9% identification
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Different model
families are
identified by distinct
features
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Method

Framework Overview

e Tworoles: Identifier LLM < Target LLM

e Task: Model family identification via multiple-choice questions

Three Key Dimensions

e @ LinguisticStyle

o Sentence structure e Word choice e Phrasing patterns

e “_ Reasoning Patterns

o Argument organization e Logic structure ¢ Math/coding approaches

e [l Alignment Preferences

o Embedded values e Political stands e Response objectivity

Case Study 1:
Application—Cooperative LLM

Setup: A “sender” LLM generates
guidance for a “solver” LLM to solve
mathematical problems.

Revealing solver identity yields
a consistent accuracy
improvement.

Case Study 2:
Alignment Risk—Reward Hacking

Setup: A “judge” LLM assesses
responses from “player'” LLMs.

Values >1.0 mean that most
models strategically adapt their
responses towards the judge
model.

Case Study 3:
Safety Threat—Targeted Jailbreaking

Setup: A jailbreaker model attempts to

elicit prohibited contents (e.g. how to
make a bomb) from a target model.

A moderate positive correlation
between a model’s tendency to
adapt to known judges and its
success ratio in identity-aware
jailbreaking.

RQ2: How does the knowledge of an

Interlocutor’s identity affect LLMs' behavior
In cooperative and competitive scenarios?
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